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DEFECT ANNEALING IN IRRADIATED SEMICONDUCTORS

INTRODUCTION

This report describes progress for the period April 1, 1965 to September 30,

1965 in the research program supported by NASA Research Grant NsG-602.

Research work in this period involved:

1. Further investigation of the possibility of obtaining exact analytic
solutions of the general annealing equations with one secondary defect
complex.

2. Development of approximate solutions of the annealing equations with
one secondary defect complex.

3. Computer calculations to investigate the behavior of the approximate

solutions.
ANNEALING MODEL WITH ONE SECONDARY DEFECT COMPLEX

The isothermal annealing equations consistent with this model have been given

previously (1) as

di
£ = -K,Vi
T 1)

dv
3c = K1Vi - Kyu(I, - €) + KqC (2)

.42 = K
ac . V(I - €) - KsC (3

i=V+C (4)
where

i = interstitial concentration

V = vacancy concentration

C = secondary defect complex concentration

I = jmpurity concentration

o = gubscript denoting initial value

K1,K2,K3 = rate constants




For convenience, the fraction of defects not annealed defined by p = %—
(,]

can be introduced and equations (1), (2), (3), (4) rewritten as

4P = g v

dt 1P (5)
8V 2 R Vi P - KV(. - C) +K,C

dt 10 2' ‘o 3 (6)
9€ . RV(I_ - €) - K.C (M
dt 2% 3

iP=V+C (8)

Numerical solutions of the set of equations (5) - (8) can be readily obtained
(1). However, the equations contain a rather large number of constants whose
values &re uncertain. The rate constants Kl’Kz’K3 are particularly uncertain.

In view of this situation, a detailed comparison of the predictions of the
annealing model with experimental isothermal annealing curves is difficult., 1In
general, it is necessary to select empirical values for the model parameters.
Attempts to fit annealing data in this manner, using numerical computer solutions
of the annealing equation, have so far been unsuccessful, This result is attri-
buted to the large number of empirical model parameters rather than to a failure

of the model itself.

As a consequence of the difficulties with numerical solutions, further efforts
were made to obtain exact analytic solutions of the annealing equations for the

general case K; # K,.

The set of equations (5), (6), (7) represents a set of coupled, non-linear, first
order differential equations. Equation (8) is redundant., It is possible to re-
place the coupled set of first order equations by an uncoupled set of second
order equations. Differentiation and substitution operations performed with (5),

(6), (7) lead to

2 K, 1 d
Q—B. - 1 <+ _..g. —(d 2 - —E 2 =
" ( Kl) p(ﬁ%) + f®y - KL+ (I + Ka)} e * KKl p- = 0 (9)
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da'Vv V(RoI_ + KoHK,V)
— . 1 2 d
2 —-—-———-—( ) +{ ° 32 * K21 -K3+2K2V+K1V} =
dt v+ 3 +K3 dt
2 (x + K 10
2
d“c K. dc 2 2K4K
() —— — (< 1 - C
(Io C)dt2+ (1+K2)(dt) + {IO(KZIO-P K3)+( 23 +K11 21(21) +
2
K
+(1<-K)c2]9£+(_§_§_1__+xkx)c2-xxc3-o (11)

Equation (9) is of particular interest since p is the quantity measured in

isothermal annealing experiments.

Equations (9), (10), (11) can be reduced to first order equations by introducing

d dv de
X==—2 = — andZ-—. This procedure yields
dx A
X .28 @p+C)X+Dpl=0 (12)
dp P

-

dy 1 2 v(M + Nv) 3 2 _

Y " vFLY +L v+L tTM+Ov |y+Pv +Q 0 (13)
I, - ¢ Z§§+AZZ+(E+FC+GC2)z-{-HCz-JCar-O (14)
where
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By means of suitable substitutions, equations (12), (13), (14), can all be

transformed to Abelian differential equations of the first kind. The standard

Abelian form is

1

U = fo(s) + fl(s) y + fz(s) y2 + f3(s) y3 (15)

Unfortunately, no standard technique exists for solving Abelian equations.

The substitutions

x=d [ yel  apdz- L
Uy U2 Us
transform (12), (13), (14) into
]
‘=- 3
Uy %U1+ (Bp + C) U12+Dp2U1 (16)
t
U o= 1 [ vouww) 1,02 3 2. 3
2 Vil U, - VL + M+ ev.l Uz + (PV™ + QV )U2 (17)
2 2 3
t A E 4+ FC + GC 2 , HC® - JC 3
= e T U+___________
[+

The problem of finding exact amalytic solutions of the amnnealing equations is
therefore equivalent to the problem of solving the Abelian equation (15).
Attempts to find exact closed form solutions for (16), (17), and (18) have

so far been unsuccessful,



APPROXIMATE SOLUTIONS FOR Klsz

As has already been indicated, the annealing equation of primary interest is

the p equation

2 Koy1 422 T dp
2‘% - “*'12?1, @ + \_(KI-KZ) 1°p+(KzI°+K3)] % (9)

dt

2
+KKip =0
310"

An obvious approximation technique is to consider a partially linearized version

of (9). Consider the equation

2 dp. 2
(x..E d =
d22+ (dt)+(33%+?( 0 (19)
dt
where
K
% 2 --1-(1+_Z)
p Kl
@ =

K
2

2
Y K110K3p
will be taken to be constants, The substitution
X =92 yie1ds
dat
-dl B = 2 -
it (xy" + 2y +7¥)

Direct integration of this equation gives

(& o (a

T oY 4By +Y

1 2ux + 0 -6

- = - 20

< (20<X+(5+5) t+c (20)
where

5 a(6®-axy)®
and

52 - 4XX>0



The initial condition X = - Klio for t = 0 requires that

¢, "']*Ln @ -5 - 2011(110) 2D
B+6 - 2K 1

Equation (20) can be solved for X to obtain

Ked2. o [c1- 08 (B+ré)+5-8 22)

20({1 - exp § Cy - t) ]

Direct integration of (22) leads to
8 Sy -t) +1nll - expS(E - C 2) 23
29(5 l t) + Ln | exp & ( 1)] (23)
+ ?.é&

2§
The initial condition p = 1 at t = 0 requires that

P =

{5(01 -t) - In LI - exp §(Cy - t)]?s+ C,

Cp=1- 0 20(6 §5C1+Ln[1 - exp (-6%)]% (24)

- g—i—%—{écl - Ln [1 - exp (5C1)j -g
Numerical calculations to compare the solution (23) with exact computer solutions
have not yet been carried out in view of the fact that a more promising approxi-
mation was discovered. It was observed that for a high percentage of experi-
mental isothermal amnealing curves, p shows a very flat plateau region out to
quite large time values. The interpretation of this behavior in terms of the
kinetic annealing model is that the rate constant K4, which governs the break~
up rate of secondary defect complexes, must be very small, It would appear
then, that if an approximate solution of equation (9) could be found for

Ky = 0, it would be a very useful solution.

For K, = 0, equation (9) becomes

3
LZR....(1+§—-) ()+[(K-K)1p+1(1 -42-0
de? 172 2 1:11:




or

2 2 d
dp 4 dp de 25
o2 plad TR0 gm0 (25)
The substitution X = dp in (25) yields
dt
X Ay, (Bp+C) =0 (26)
dp p

The solution of (26) is

2 c
Bp =B A
X= o, +4.1 +C5F @7

The constant C can be determined from the condition X = K

3 110 for p=1 as

B C
€3 = = &yly ¥ =7 5D (28

Equation (27) can then be expressed as

A
Xn-‘-i-Eg_E- 2+Q.p..p (Klio+ ._B_+-g-_

- P - A-Z
dt A-2 A-1 A-1
so that, in terms of the original constants
d I, Ky
a%a-Kliop[p+I9-(p 1’1)] (29)

o

Equation (29) can be used to find the annealing plateau level for a particular

set of model parameters. For K, = 0, the plateau criterion is 92 = 0. The

3 dt
plateau level, p = P, is then given by the equation
I Ko/x
P+ -i-g (P / 1-1) e 0 (30)
o

In general, it 1s not possible to solve (30) explicitly for P. However, for

K2 = K1 the solution is
1
14 i

L

P = (31)

This result was obtained previously (1) from the analytic solution of the

annealing equation for the Kl = K2 case with K3 small. For arbitrary
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KZ/ » equation (30) can be solved by interation to give plateau levels
K

to any desired accuracy.

In order to obtain the fraction of defects not annealed, p(t), it is necessary

to 1integrate equation (29). This leads to
1

1 S dp
K
Klio plp + ;[_o_ (p Z/Kl B 1):}

For arbitrary KZIKI’ there is no analytic closed form expression for the

integral
6(p) = g dp .
K
P PrP+_12(p Z/KI-I)
L i,

This integral can be readily integrated numerically, however, A computer
program was written to perform the integration by Simpson's Rule. The solution

of the annealing equation (25) can then be written as

1
K,1 -~ G(p) = t (33)
0

It might be noted that G(p) is dimensionless and depends on the ratios

I, K

2
and == ,
io K1

NUMERICAL CALCULAT IONS
The possibility of using equation (33) to empirically fit isothermal annealing

data was investigated. This curve fitting requires that values be selected

for I , Ky . and K,i . The ratio I can be established with fairly good
I, K 1
[+]

accuracy. Then, since the plateau equation (30) involves only Ky and Io .

K, i,
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a value of K2 can be selected to give the proper plateau level. Solving (30)
1
for 2 yields

Ky
K i
2 _ In Q- —12— P) (34)
3 o]

1 Ln P

The integral G(p) can now be evaluated and a value of K io chosen to give

1
the best overall fit between the experimental annealing curve and the theo-

retical predictions of eq. (33).

This curve fitting procedure was employed for an experimental isothermal anneal-

ing curve obtained by Pigg (2) for n-type germanium at 455°C. 1In this case,

Eg = 2.81 and the observed plateau level is P = 0.22, The required empirical

i

value of K2 is given by (34) as R, = 0.0539. Figure (1) shows the experi-
! X

mental curve and the best theoretical fit. Further calculations of this type
are in progress for other isothermal annealing curves reported in the litera-

ture,
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